Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 157: 111235, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35761547

RESUMO

Oenococcus oeni and Lactiplantibacillus plantarum are major wine-associated lactic acid bacteria that positively influence wine by carrying out malolactic fermentation. O. oeni is the most widely used commercial starter in winemaking because of its fast and efficient malate metabolism capacity under harsh wine conditions. To date, very little is known about the specific molecular mechanism underlying the differences in malate metabolism between O. oeni and L. plantarum under harsh wine conditions. Therefore, in this study, the functions of genes encoding malic enzyme (ME) and malolactic enzyme (MLE) under acid stress in O. oeni and L. plantarum, previously described to have the ability to direct malate metabolism, were comparatively verified through genetic manipulation in L. plantarum. Results showed that the MLE was the only enzyme responsible for direct malate metabolism under acid stress in O. oeni and L. plantarum. In addition, the MLEs in O. oeni and L. plantarum were positively related to acid tolerance by metabolizing malate and increasing the medium pH. Furthermore, the MLE in O. oeni exhibited significantly higher malate metabolism activity than that in L. plantarum under acid stress.


Assuntos
Oenococcus , Vinho , Ácidos , Concentração de Íons de Hidrogênio , Malatos/metabolismo , Oenococcus/genética , Oenococcus/metabolismo , Vinho/análise
2.
Front Bioeng Biotechnol ; 10: 894870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615477

RESUMO

Organic acid metabolism by lactic acid bacteria plays a significant role in improving wine quality. During this process, the uptake of extracellular organic acids by the transporters is the first rate-limiting step. However, up to now, there is very little published research on the functional verification of organic acid transporter genes in wine lactic acid bacteria. In this study, a predicted citrate transporter gene JKL54_04345 (citP) by protein homology analysis was knocked out using a CRISPR/Cas9-based gene-editing system, and then complemented using the modified pMG36e vectors in a major wine lactic acid bacterium, Lactiplantibacillus plantarum XJ25, to verify its function in citrate metabolism for the first time. The results showed that the gene knockout mutant XJ25-ΔcitP lost the ability to utilize citric acid, while the gene complement mutant XJ25-ΔcitP-pMG36ek11-citP fully recovered the ability of citric acid utilization. Meanwhile, citP knockout and complement barely affected the utilization of l-malic acid. These indicated that citP in L. plantarum functioned as a citrate transporter and was the only gene responsible for citrate transporter. In addition, two modified plasmid vectors used for gene supplement in L. plantarum showed distinct transcription efficiency. The transcription efficiency of citP in XJ25-ΔcitP-pMG36ek11-citP mutant was 4.01 times higher than that in XJ25-ΔcitP-pMG36ek-citP mutant, and the utilization rate of citric acid in the former was 3.95 times higher than that in the latter, indicating that pMG36ek11 can be used as a high-level expression vector in lactic acid bacteria.

3.
Food Microbiol ; 102: 103905, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809937

RESUMO

BACKGROUND: Acid stress is one of the most important environmental stresses that adversely affect the growth of lactic acid bacteria (LAB), such as Oenococcus oeni which was isolated from grape-berries and mainly used in wine fermentation. The aim of this paper is to comprehensively characterize the mechanisms of acid stress regulation in O. oeni and to provide a viable theoretical basis for breed and improvement of existing LAB. METHOD: First, six O. oeni mutants with acid-sensitive (strains b2, a1, c2) and acid-tolerant (strains b1, a3, c1) phenotypes were screened from three wild-type O. oeni, and then their genome (sequencing), transcriptome and metabolome (LC-MS/MS) were examined. RESULTS: A total of 459 genes were identified with one or more intragenic single nucleotide polymorphisms (SNPs) in these mutants, and were extensively involved in metabolism and cellular functions with a high mutation rates in purine (46%) and pyrimidine (48%) metabolic pathways. There were 210 mutated genes that cause significant changes in expression levels. In addition, 446 differentially accumulated metabolites were detected, and they were consistently detected at relatively high levels in the acid-tolerant O. oeni mutant. The levels of intracellular differentially expressed genes and differential metabolites changed with increasing culture time. CONCLUSION: The integrative pathways analysis showed that the intracellular response associated with acid regulation differed significantly between acid-sensitive and acid-tolerant O. oeni mutants, and also changed at different growth stages.


Assuntos
Ácidos , Oenococcus , Vinho , Cromatografia Líquida , Fermentação , Genoma Bacteriano , Ácido Láctico , Metaboloma , Oenococcus/genética , Oenococcus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem , Transcriptoma , Vinho/análise
4.
Food Sci Nutr ; 9(11): 5914-5927, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34760225

RESUMO

This study used litchi (Heiye) wine and distilled spirit as raw experimental materials to analyze the volatile aroma compounds. Qualitative and quantitative determination of aromatic components was studied using stir bar sportive extraction (SBSE) and gas chromatography coupled to mass spectrometry (GC/MS). Results indicated that a total of 128 different types of aroma compounds were observed, which belonged to six chemical groups, including 39 esters, 16 alcohols, 16 acids, 22 terpenes, 17 aldehydes and ketones, and 18 other compounds. In particular, esters were the highest among all six categories and represented approximately 52% of the total flavor component content in litchi distilled spirit. The odor activity values (OAVs) revealed 22 types of aroma compounds with OAVs >1 in this test. It is possible that the produced litchi distilled spirit had a stronger varietal character due to the increased concentrations and OAVs of ß-damascenone, linalool, ethyl butyrate, ethyl isovalerate, ethyl caproate, trans-rose oxide, and cis-rose oxide. Taking the OAVs into account, we evaluated the characteristic aromas for litchi wine and litchi distilled spirit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...